什么是wav格式,和mp3有什么不同
音乐格式五花八门,多如牛毛,但不外乎分为两大类:一类为音乐指令文件(如MIDI),一般由音乐创作软件制作而成,它实质上是一种音乐演奏的命令,不包括具体的声音数据,故文件很小;另一类为声音文件,是通过录音设备录制的原始声音,其实质上是一种二进制的采样数据,故文件较大。
从播放形式上,声音文件还可以分为“音频流”和“非音频流”两种,前者能够一边下载一边收听,比如“.WMA”、“.RA”、“.MOV”等,后者则不能。所谓流媒体技术就是把连续的影像和声音信息经过压缩处理后放上网站服务器,让用户一边下载一边观看、收听,而不需要等整个压缩文件全部下载到自己机器后才可以观看的技术。
下面,将各种音乐文件的格式收集整理如下:
流式音频:Windows Media Audio(WMA)
WMA就是Windows Media Audio的缩写,是微软自己开发的Windows Midea Audio技术。它和Windows Midea Video一样,经历了几代改良后,变得非常出色。比起老掉牙的MP3压缩技术,WMA无论从技术性能(支持音频流)还是压缩率(比MP3高一倍)都远远把MP3抛在后面了。 据微软声称,用它来制作接近CD品质的音频文件,其体积仅相当于MP3的1/3。在48Kbps的传送速率下即可得到接近CD品质(Near-CD Quality)的音频数据流,在64Kbps的传送速率下可以得到与CD相同品质的音乐,而当连接速率超过96Kbps后则可以得到超过CD的品质。
流式音频:RealMedia(RA/RM/RAM)
RealMedia采用的是RealNetworks公司自己开发的Real G2 Codec,它具有很多先进的设计,例如,SVT(Scalable Video Technology),该技术可以让速度较慢的电脑不需要解开所有的原始图像数据也能流畅观看节目;双向编码(Two-Encoding)技术类似于VBR,它可通过预先扫描整个影片,根据带宽的限制选择最优化压缩码率。RealMedia音频部分采用的是RealAudio,它具有21种编码方式,可实现声音在单声道、立体声音乐不同速率下的压缩。
流式音频:QuickTime(MOV)
QuickTimeApple的QuickTime是最早的视频工业标准,在1999年发布的QuickTime 4.0版本后开始支持真正的实时播放,其格式为“.mov”。它的视频压缩部分采用Sorenson Video技术,该技术支持VBR(Variable Bit Rate),也就是我们常说的动态码率,它可以动态地分配带宽以尽可能小的文件获得最好的播放效果,并能使在解压缩时获得平滑流畅的画面。音频部分QuickTime采用一种名为QDesiglMusic的技术,据说是一种比MP3更好的音频流技术。
VQF
VQF即TwinVQ(Transform-domain Weighted Interleave Vector Quantization),是由NTT(Nippon Telegraph and Telephone)与Yamaha共同开发的一种音频压缩技术。VQF的音频压缩率比标准的MPEG音频压缩率高出近一倍,可以达到18:1左右甚至更高。也就是说把一首4分钟的歌曲(WAV文件)压成MP3,大约需要4MB左右的硬盘空间,而同一首歌曲,如果使用VQF音频压缩技术的话,那只需要2MB左右的硬盘空间。因此,在音频压缩率方面,MP3和RA都不是VQF的对手。
如此之高的压缩率是否会影响音质呢?实际聆听的结果告诉我们——不会。当VQF以44KHz、80kbit/s的音频采样率压缩音乐时,它的音质优于44KHz、128kbit/s的MP3,当VQF以44KHz、96kbit/s的频率压缩时,它的音质几乎等于44KHz、256kbit/s的MP3!经SoundVQ压缩后的音频文件在进行回放效果试听时,几乎没有人能听出它与原音频文件的差异。
AIFF(AIF/AIFF)
AIFF是音频交换文件格式(Audio Interchange File Format)的英文缩写,是Apple公司开发的一种声音文件格式,被Macintosh平台及其应用程序所支持,Netscape Navigator浏览器中的LiveAudio也支持AIFF格式,SGI及其它专业音频软件包也同样支持AIFF格式。AIFF支持ACE2、ACE8、MAC3和MAC6压缩,支持16位44.1kHz立体声。
Audio(AU)
Audio文件是Sun微系统公司推出的一种经过压缩的数字声音格式。AU文件原先是UNIX操作系统下的数字声音文件。由于早期Internet上的Web服务器主要是基于UNIX的,所以.AU格式的文件在如今的Internet中也是常用的声音文件格式,Netscape Navigator浏览器中的LiveAudio也支持Audio格式的声音文件。
Voice(VOC)
Voice文件是新加坡著名的多媒体公司Creative Labs开发的声音文件格式,多用于保存Creative Sound Blaster系列声卡所采集的声音数据,被Windows平台和DOS平台所支持,支持CCITTA Law和CCITTμLaw等压缩算法。在DOS程序和游戏中常会遇到这种文件,它是随声卡一起产生的数字声音文件,它与WAV文件的结构相似,可以通过一些工具软件方便地互相转换。
Module(MOD、S3M、XM、MTM、FAR、KAR、IT)
模块(Module)格式同时具有MIDI与数字音频的共同特性——既包括如何演奏乐器的指令,又保存了数字声音信号的采样数据。因此,其声音回放质量对音频硬件的依赖性较小,也就是说,在不同的机器上可以获得基本相似的声音回放质量。模块文件根据不同的编码方法有MOD、S3M、XM、MTM、FAR、KAR、IT等多种不同格式。
MIDI(MID/CMF/RMI)
MIDI是乐器数字接口(Musical Instrument Digital Interface)的英文缩写,是数字音乐/电子合成乐器的统一国际标准。MIDI规范由美、日几家著名电子乐器厂商于1983年共同制定,目的是解决各种电子乐器间存在的兼容性问题。MIDI规范不仅定义了电脑音乐程序、音乐合成器及其它电子音乐设备交换音乐信号的方式,而且还规定了不同厂家的电子乐器与电脑连接的电缆和硬件及设备间数据传输的协议,可用于为不同乐器创建数字声音,能很容易地模拟钢琴、小提琴等传统乐器的声音。MIDI本身并不能发出声音,它是一个协议,只包含用于产生特定声音的指令,而这些指令则包括调用何种MIDI设备的音色、声音的强弱及持续的时间等。电脑把这些指令交由声卡去合成相应的声音(如依指令发出钢琴声或小提琴声等)。最初,因为不同MIDI设备的乐器音色排列方法不一,所以会造成同一MIDI文件在不同的设备上会出现完全不同的放音效果(比如一个钢琴音色的MIDI文件,在不同设备上播放时会变成小提琴或者小号的音色)。为避免出现这种混乱情况,GM(General MIDI,通用MIDI)标准被提出并得到了Windows操作系统的支持,得到了相当广泛的应用。它规定了前128种常用乐器音色的编排方式,例如1号是钢琴、66号是萨克斯管等等。GM标准还描述了成为GM兼容格式的硬件设备应具有的其它特征,如GM标准音源同时发音数不少于24,MIDI通道为16,第10通道为打击乐声部等等,它实际上是对MIDI规范的补充。
Roland公司提出的GS标准在兼容GM标准的基础上,对其进行了发展,增强了音乐的表现力——它提供比GM标准数量更多的打击乐器组和更多的特殊音效。GS标准具有广泛的软硬件适应性,包括声卡、音乐爱好者的娱乐乐器到专业音乐器材等。后来,Yamaha公司又提出了基于GM标准的XG标准。相对于保存真实采样数据的声音文件,MIDI文件显得更加紧凑,其文件的大小要比WAV文件小得多——一分钟的WAV文件约要占用10MB的硬盘空间,而一分钟的MIDI却只有区区的3.4KB。现在,MIDI已经成为电脑音乐的代名词。
电脑播放MIDI文件时, 有两种方法合成声音: FM合成和波表合成。FM合成是通过多个频率的声音混合来模拟乐器的声音;波表合成是将乐器的声音样本存储在声卡波形表中,播放时从波形表中取出来产生声音。采用波表合成技术可以产生更逼真的声音。
MIDI文件有几个变通的格式,其中CMF文件是随声卡一起使用的音乐文件,与MIDI文件非常相似,只是文件头略有差别;另一种MIDI文件是Windows使用的RIFF文件的一种子格式,称为RMID,扩展名为RMI。
声音波形文件(WAV)
由Microsoft公司开发的一种WAV声音文件格式,是如今电脑上最为常见的声音文件格式,它符合RIFF(Resource Interchange File Format)文件规范,用于保存Windows平台的音频信息资源,被Windows平台及其应用程序所广泛支持。Wave格式支持MSADPCM、CCITTALaw、CCITT μ Law和其它压缩算法,支持多种音频位数、采样频率和声道,但其缺点是文件体积较大(一分钟44kHZ、16bit Stereo的WAV文件约要占用10MB左右的硬盘空间),所以不适合长时间记录。
MPEC音频文件(MP1/MP2/MP3)
MPEG(Moving Picture Experts Group,活动图像专家组)代表的是MPEG活动影音压缩标准,MPEG音频文件指的是MPEG标准中的声音部分,即MPEG音频层(MPEG Audio Layer)。MPEG音频文件根据压缩质量和编码复杂程度的不同可分为三层(MPEG Audio Layer 1/2/3),分别与MP1、MP2和MP3这三种声音文件相对应。MPEG音频编码具有很高的压缩率,MP1和MP2的压缩率分别为4∶1和6∶1~8∶1,而MP3的压缩率则高达10∶1~12∶1,也就是说一分钟CD音质的音乐,未经压缩需要10MB存储空间,而经过MP3压缩编码后只有1MB左右,同时其音质基本保持不失真。因此,目前Internet上的音乐格式以MP3最为常见。
MP3为降低声音失真采取了名为“感官编码技术”的编码算法:编码时先对音频文件进行频谱分析,然后用过滤器滤掉噪音电平,接着通过量化的方式将剩下的每一位打散排列,最后形成具有较高压缩比的MP3文件,并使压缩后的文件在回放时能够达到比较接近原音源的声音效果。虽然它是一种有损压缩,但是它的最大优势是以极小的声音失真换来了较高的压缩比。
MP4
MP3问世不久,就凭着较高的压缩比(12:1)和较好的音质创造了一个全新的音乐领域。然而,MP3的开放性却最终不可避免地导致了版权之争。在这样的背景下,文件更小、音质更佳,同时还能有效保护版权的MP4就应运而生了。
MP4与MP3之间其实并没有必然的联系。首先,MP3是一种音频压缩的国际技术标准,而MP4却是一个商标的名称。其次,它采用的音频压缩技术也迥然不同,MP4采用的是美国电话电报公司(AT&T)所研发的、以“知觉编码”为关键技术的a2b音乐压缩技术(http://www.a2bmusic.com),可将压缩比成功地提高到15:1(最大可达到20:1)而不影响音乐的实际听感。同时,MP4在加密和授权方面也做了特别的设计。它有如下特点:
(1)每首MP4乐曲就是一个扩展名为.exe的可执行文件,在Windows里直接双击就可以运行播放,十分方便。MP4的这个优点同时又是它的先天缺陷—容易感染电脑病毒!
(2)更小的体积!更好的音质?相对先进的a2b音频压缩技术的采用,使MP4文件大小仅为MP3的3/4左右,从这个角度来看,MP4更适合在Internet上传播,而且据说音质也更胜一筹,但我怎么也没听出它比MP3的音质更为优越。
(3)独特的数字水印。MP4乐曲采用了名为“Solana”技术的数字水印,可方便地追踪和发现盗版发行行为。而且,任何针对MP4的非法解压行为,都可能导致MP4原文件的损毁。
(4)支持版权保护。MP4乐曲还内置了包括与作者、版权持有者相关的文字、图像等版权说明,既可声明版权,又表示了对作者和演唱者的尊重。
(5)比较完善的功能。MP4可独立调节左右声道音量控制;内置波形/分频动态音频显示和音乐管理器,可支持多种彩色图像、网站链接及无限制的滚动显示文本。
音乐格式的差异
电脑上常见的音频格式通常分为midi文件和声音文件两大类。其中,Midi文件是一种音乐演奏指令的序列,就像乐谱一样,可以利用声音输出设备或与电脑相连的电子乐器进行演奏,由于不包含具体声音数据,所以文件较小。而声音文件则是通过录音设备录制的原始声音,直接记录了真实声音的二进制采样数据,文件较大。
1. MIDI(.MID)
MIDI是乐器数字接口的英文缩写,是数字音乐/电子合成乐器国际标准。MIDI规范是1983年制订的,目的是解决各种电子乐器间存在的兼容性问题。MIDI规范不仅定义了电脑音乐程序,音乐合成器及其电子音乐设备交换音乐信号的方式,而且还规定了不同厂家的电子乐器与电脑连接的电缆和硬件及设备见数据传输的协议,可用于各种乐器创建数字声音,能很容易地模拟钢琴,小提琴等传统乐器的声音。MIDI本身并不能发出声音,它是一个协议,只包含用于产生特定声音的指令,而这些指令则包括调用何种MIDI设备的声音,声音的强弱及持续的时间等。电脑把这些指令交由声卡去合成相应的声音。最初,因为不同MIDI设备的乐器音色排列方法不一,所以会造成同一MIDI文件在不同的设备会出现完全不同的放声效果。为避免出现这种混乱情况,GM(GENERAL MIDI)标准被提出并得到了WINDOW操作系统的支持,得到了相当广泛得应用。它规定了前128中常用乐器的音色编排方式,例如1号是钢琴,66号是萨克斯管等等,它实际上是对midi规范的补充。 ROLAND公司又提出了GS标准,它在兼容GM的基础上,对其进行了发展,增强了音乐的表现力。它提供比GM标准数量更多的打击乐器组合,更多的特殊音响。GS标准具有广泛的软硬件适应性,包括声卡,音乐爱好者的娱乐乐器啊到专业音乐器材等。后来,YAMAHA公司又提出了基于GM标准的XG标准,它相对于保存真实采样数据的声音文件,MIDI文件显得更加紧凑,其文件的大小要比WAV文件小的多,一分钟的WAV文件约要占用10MB的硬盘空间,而一分钟的MIDI却只有区区的3.4KB。现在,MIDI已经成为电脑音乐的代名词。电脑播放MIDI文件时,有两种方法合成声音;FM合成和波表合成。FM合成是通过多个频率的声音混合来模拟乐器的声音,波表合成是将乐器的声音样本存储在声卡波形表中,播放时从波形表中取出来,产生声音。采用波表合成技术,可以产生更逼真的声音。MIDI文件有几个变通的格式,其中CMF文件是随声卡一起使用的音乐文件,于MIDI文件非常相似,只是文件头略有差别;另一种MIDI文件是WINDOWS使用的RIFF文件的一种子格式,称为RMID,扩展名为RMI。
2. WAVE(.WAV)
由MicroSoft公司开发的一种WAV声音文件格式,是如今电脑上最为常见的声音文件,他符合RIFF文件规范,用于保存WINDOWS平台的音频信息资源,被WINDOWS平台机器应用程序所广泛支持,WAVE格式支持MSADPCM、CCIPTALAW、CCIPT-LAW和其他压缩算法,支持多种音频位数,采样频率和声道,但其缺点是文件体积较大,所以不适合长时间纪录。
3. .MP1/.MP2/.MP3
MPEG是动态图象专家组的英文缩写。这个专家组始建于1988年,专门负责为CD建立视频和音频压缩标准。MPEG音频文件指的是MPEG标准中的声音部分 即MPEG音频层。MPEG频文件根据压缩质量和编码复杂程度的不同可分为三层(MPEG AUDIO LAYER 1/2/3分别与MP1,MP2和MP3这三种声音文件相对应。MPEG音频编码具有很高的压缩率,MP1和MP2 的压缩率分别为4:1和6:1-8:1,而MP3的压缩率则高达10:1-12:1,也就是说一分钟CD音质的音乐未经压缩需要10MB存储空间,而经过MP3压缩编码后只有1MB左右,同时其音质基本保持不失真。因此,目前INTERNET上的音乐格式以MP3最为常见。MP3为降低声音失真采取了名为“感官编码技术”的编码算法:编码时先对音频文件进行频谱分析,然后用过滤器滤掉噪音电平,接着通过量化的方式将剩下的每一位打散排列,最后形成具有较高压缩比的MP3文件,并使压缩后的文件在回放时能够达到比较接近原音源的声音效果。虽然它是一种有损压缩,但是它的最大优势是以极小的声音失真换来了较高的压缩比。
4. .MP4
MP3问世不久,就凭这较高的压缩比12:1和较好的音质创造了一个全新的音乐领域,然而MP3的开放性却最终不可避免的导致了版权之争,在这样的背景之下,文件更小,音质更佳,同时还能有效保护版权的MP4就应运而生了。MP3和MP4之间其实并没有必然的联系,首先MP3是一种音频压缩的国际技术标准,而MP4确实一个商标的名称,其次,它采用的音频压缩技术也迥然不同,MP4采用的是美国电话电报公司所研发的,采用“知觉编码”的a2b音乐压缩技术,压缩比成功的提高到15:1,最高可达到20:1,且不影响音乐的实际听感,同时MP4在加密和授权方面也做了特别设计,它有如下特点:
(1)每首MP4乐曲就是一个扩展名为.exe的可执行文件。在windows里直接双击就可以运行播放十分方便。但MP4这个特点也带来了它的先天缺陷–容易感染电脑病毒!
(2)更小的体积,更好的音质。由于采用先进的a2b音频压缩技术,使MP4文件的大小仅为MP3的四分之三左右,从这个角度来看MP4更适合在inter上传播,而且音质也更胜一筹。
(3)独特的数字水印。MP4月去采用了名为“SOLANA”的数字水印技术。可方便的追踪和发现盗版行为。而且,任何针对MP4的非法解压行为都可能导致MP4原文件的损毁。
(4)支持版权保护。MP4乐曲还内置了包括与作品版权持有者相关的文字、图像等版权说明,即可说明版权。又表示了对作者和演唱者的尊重。
(5)比较完善的功能。MP4可独立调节左右声道音量控制,内置波形/分频动态音频显示和音乐管理器可支持多种彩色图像,网站连接及无限制的滚动显示文本。
5. .VQF
VQF即TWINVQ是有NTT与YAMAHA共同开发的一种音频压缩技术。VQF的音频压缩率比标准的MPEG音频压缩率高出近一倍,可以达到18:1左右,甚至更高。也就是说,把一首四分钟的歌曲压成MP3大约需要4MB左右的硬盘空间,而同一首歌曲如果使用VQF音频压缩技术,只需要2MB左右的硬盘空间。因此在音频压缩率方面,MP3和RA都不是VQF的对手。如此之高的压缩率是否会影响音质呢?实际聆听的结果告诉我们:不会。当VQF以44KHZ,96KBBPS 的频率压缩时,她的音质几乎等于44KHz,256KBPS 的MP3。经VQF压缩后的音频文件在回放效果试听时,几乎没有人能听出它与原音频文件的差异。
6. .AIF/.AIFF
.AIFF是音频交换文件格式的英文缩写。是APPLE公司开发的一种音频文件格式,被MACINTOSH平台及其应用程序所支持,NETSCAPE浏览器中LIVEAUDIO也支持AIFF格式,SGI及其他专业音频软件包也同样支持AIFF格式。AIFF支持ACE2、ACE8、MAC3和MAC6压缩。支持16位44.1KHZ立体声。
7. .AU
AUDIO文件是SUN公司推出的一种数字音频格式。AU文件原先是UNIX操作系统下的数字声音文件。由于早期INTERNET上的WEB服务器主要是基于UNIX的,所以,AU格式的文件在如今的INTERNET中也是常用的声音文件格式,NETSCAPE 浏览器中的LIVEAUDIO也支持AUDIO格式的声音文件。
8. .VOC
VOICE文件是新加坡著名的多媒体公司CREATIVE LABS开发的声音文件格式,多用于保存CREATIVE SOUND BLASTER系列声卡所采集的声音数据,被WINDOWS平台和DOS平台所支持,它支持CCITTA LAW和CCITT u LAW等压缩算法。在DOS程序和游戏中常会遇到这种文件,他是随声卡一起产生的数字声音文件,他与WAV文件的结构相似,可以通过一些工具软件方便的互相转换。
9. .RA/.RM/.RAM
REALAUDIO文件是REAL NETWORKS公司开发的一种新型音频流文件格式,它包含在REAL NETWORK公司所定制的音频、视频压缩规范–REALMEDIA中,主要用于在低速率的广域网上实时传输音频信息。网络连接速率不同,客户端所获得的声音质量也不尽相同:对于14.4KBPS的网络连接,可获得调幅(AM)质量的音质;对于28.8KBPS的连接,可以达到广播级的声音质量,如果使用ISDN或ADSL等更快的线路连接,则可获得CD音质的声音。
10. .MOD/.S3M/.XM/.MTM/.FAR/.KAR/.IT
模版格式文件。它同时具有MIDI与数字音频的共同特性–既包括如何演奏乐曲的指令,有保存了数字声音信号的采样数据。因此,其声音回放质量对音频硬件的依赖性较小,也就是说在不同的机器上可以获得基本相似的声音回放质量。模块文件根据不同的编码有MOD、S3M、XM、MTM、FAR、KAR、IT等多种不同格式。
电脑上这么多种格式的音乐文件,其实都是通过我们电脑里的声卡合成输出为我们的耳朵最终所听到的音乐。声卡最为常见的合成手段有两种:FM合成和波表合成。其中,FM合成方式多鉴于早期的ISA声卡,是运用是声音振荡的原理对MIDI进行合成处理,效果较差。想要在电脑上听到真正悦耳动听的音乐,就使用波表合成。
文件格式的分类
这分类太多了啊.一般来说常用的就txt(文本文件)exe(可执行文件) rar(压缩文件)还有office里面的一些文件格式 还有html(网页文件)这些都是比较常见的,文件格式你也没有必要全部记完,这些都是一个积累过程. 还有些文件格式是你装了响应的软件过后产生的,最好的办法就是在你遇到什么看不懂的文件的时候你在google上查一下.
请问这3个进程是病毒么
进程文件: wowexec 或者 wowexec.exe
进程名称: Microsoft Windows On Windows Execution Process
描述:wowexec.exe是操作系统相关程序,用于支持16位进程
MOD是一种类似波表的音乐格式,但它的结构却类似 MIDI,使用真实采样,体积很小,在以前的DOS年代,MOD经常被作为游戏的背景音乐。现在的MOD可以包含很多音轨,而且格式众多,如S3M、NST、669、MTM、XM、IT、XT和RT等。
进程文件: twunk_16.exe
进程名称: Twain_32.dll Client’s 16-Bit Thunking Server
英文描述: twunk_16.exe is a process associated with Twain Thunker from Twain Working Group.
进程分析:
形(式)实(在)转换服务器,允许16位程序进行32位调用。
三个进程都是安全的,不是病毒!
Java Mod Player 1.7 怎么用?
一个功能强大的mod格式音频播放器,其具体特点如下:1.拥有低CPU占用的高质量混音器 2.支持.xm、.it、.mod、.s3m格式的音频播放 3.支持打开、保存、编辑等操作,并能播放列表文件 4.支持界面更换和播放时的可视化效果 5.可以通过滑动条来快速、准确的跳到音频相应位置 6.可以进行多种环境音效调节
android手机:中子播放器和rockbox哪个更棒?
音质比Rockbox和PowerAMP要好,设置项很多,
产品特色:
中子播放器Neutron Music Player是一款专业播放器,具有专业高清32位音频渲染的核心,有助于从你的Android设备提供最佳音质外接扬声器或耳机。具有复杂的UI,提供了先进的控制音乐播放。这是不容易的,而不是另一个POP音乐播放器,它是发烧友和那些明白什么是音乐素质。推荐使用Hi-Fi/High-End音频硬件。
特点:
* 32位音频解码/高品质HD音频处理。
*音频格式:MP1,MP2,MP3,OGG,FLAC(8,16,24,32位),WMA,AC3,AAC,M4A,M4B,M4R,MP4,3GP,3G2,MOV,APE(猴子的音频) ALAC,西弗吉尼亚州(WavPack),MPC(MusePack),WAV(PCM {8,16,24,32 -位乐},ima4,MS – ADPCM,U -法律,法律),AU(PCM {8, 16,24,32,64位},U -法律,法),MPEG(音频),AVI(音频),iTunes的包容性,除了受DRM保护的。
*模块化的音频格式:按付款当日价格计算,IM的XM,S3M。
*语音音频格式:SPEEX。
* Ambiophonic R.A.C.E. DSP(外部扬声器的立体空间化)。
* Crossfeeding(立体声耳机缩小)。
*真正的无缝播放(音频采样准确)。
*交叉淡入淡出(包括手动跟踪,在播放切换)。
*抖动(音频信号量化避免)。
*实时重采样:速度快,质量,高保真音响。
*循环(播放列表,或跟踪)。
*重放增益(不支持的格式除外)。
* CUE文件的播放列表。
*总部4波段参数图形均衡器。
*实时频谱分析仪44 -波段。
*实时RMS栏。
*主/前置卷管理。
*横向和纵向的UI模式(包括反向)。
*简约部件:中子迷你。
*播放/空闲/唤醒状态的任务栏的通知。
*可移动的外置SD卡。
*播放排序:(源,专辑,艺术家,流派),洗牌(包括循环洗牌),循环的多个实例。
* Unicode的标签。
*独特的夜与动态音频可视化用户界面模式(屏幕闪烁)。
*滚动的专辑封面(支持格式:PNG,JPG)。
*取决于对音乐专辑封面抖动。
*时钟模式。
*睡眠定时器:15,30,45,60,90分钟。
*唤醒定时器。
*自动键锁(锁面积闪烁)与动态的色彩响应基础上,正在播放音乐。
*自定义设置。
推荐硬件:
– 1GHz以上的CPU(单,或多核)。
– 480X800的屏幕分辨率,或更高。
其实都是个人所好,并不一定孰好孰坏
高中数学必修五总结
一、集合与简易逻辑:
一、理解集合中的有关概念
(1)集合中元素的特征: 确定性 , 互异性 , 无序性 。
(2)集合与元素的关系用符号=表示。
(3)常用数集的符号表示:自然数集 ;正整数集 ;整数集 ;有理数集 、实数集 。
(4)集合的表示法: 列举法 , 描述法 , 韦恩图 。
(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。
二、函数
一、映射与函数:
(1)映射的概念: (2)一一映射:(3)函数的概念:
二、函数的三要素:
相同函数的判断方法:①对应法则 ;②定义域 (两点必须同时具备)
(1)函数解析式的求法:
①定义法(拼凑):②换元法:③待定系数法:④赋值法:
(2)函数定义域的求法:
①含参问题的定义域要分类讨论;
②对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。
(3)函数值域的求法:
①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式;
②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ;
④换元法:通过变量代换转化为能求值域的函数,化归思想;
⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;
⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域;
⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
三、函数的性质:
函数的单调性、奇偶性、周期性
单调性:定义:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较)
导数法(适用于多项式函数)
复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数;
f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。
判别方法:定义法, 图像法 ,复合函数法
应用:把函数值进行转化求解。
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。
其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.
应用:求函数值和某个区间上的函数解析式。
四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。
常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)
平移变换 y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过 平移得到函数y=f(2x+4)的图象。
(ⅱ)会结合向量的平移,理解按照向量 (m,n)平移的意义。
对称变换 y=f(x)→y=f(-x),关于y轴对称
y=f(x)→y=-f(x) ,关于x轴对称
y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称
y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)
伸缩变换:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。
一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;
五、反函数:
(1)定义:
(2)函数存在反函数的条件:
(3)互为反函数的定义域与值域的关系:
(4)求反函数的步骤:①将 看成关于 的方程,解出 ,若有两解,要注意解的选择;②将 互换,得 ;③写出反函数的定义域(即 的值域)。
(5)互为反函数的图象间的关系:
(6)原函数与反函数具有相同的单调性;
(7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。
七、常用的初等函数:
(1)一元一次函数:
(2)一元二次函数:
一般式
两点式
顶点式
二次函数求最值问题:首先要采用配方法,化为一般式,
有三个类型题型:
(1)顶点固定,区间也固定。如:
(2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外。
(3)顶点固定,区间变动,这时要讨论区间中的参数.
等价命题 在区间 上有两根 在区间 上有两根 在区间 或 上有一根
注意:若在闭区间 讨论方程 有实数解的情况,可先利用在开区间 上实根分布的情况,得出结果,在令 和 检查端点的情况。
(3)反比例函数:
(4)指数函数:
指数函数:y= (a>o,a≠1),图象恒过点(0,1),单调性与a的值有关,在解题中,往往要对a分a>1和0
(5)对数函数: