python中re模块的compile函数应该怎么用?
这里面表示的是一个正则表达式语句的啦,http://www.cnblogs.com/huxi/archive/2010/07/04/1771073.html 参考这个看看吧
JavaScript的compile方法
他说的意思是可以删除和添加第二个参数就是说,可以用第二个参数,也可以不用,相当于别的语言中的重载,你在使用这个函数时可以有两个参数,也可以只有一个参数.
python中使用compile方法怎么实现定位下面这段数据中的中文
readlines = open("file") for line in readlines : chinese = re.match(".+
", line) if chinese: print chinese.group(1) 我直接用了re,自己试试
AngularJS的指令 compile和link的区别及使用示例
controller,link,compile有什么不同
//directives.js增加exampleDirective
phonecatDirectives.directive(‘exampleDirective’, function() {
return {
restrict: ‘E’,
template: ‘
Hello {{number}}!
‘,
controller: function($scope, $element){
$scope.number = $scope.number + “22222 “;
},
link: function(scope, el, attr) {
scope.number = scope.number + “33333 “;
},
compile: function(element, attributes) {
return {
pre: function preLink(scope, element, attributes) {
scope.number = scope.number + “44444 “;
},
post: function postLink(scope, element, attributes) {
scope.number = scope.number + “55555 “;
}
};
}
}
});
//controller.js添加
dtControllers.controller(‘directive2’,[‘$scope’,
function($scope) {
$scope.number = ‘1111 ‘;
}
]);
//html
运行结果: Hello 1111 22222 44444 55555 !
compile是什么意思
compile 英[kəmˈpaɪl] 美[kəmˈpaɪl] vt. 编译; 编制; 汇编; 编辑; [例句]And remember, he was enduring C++ compile and link cycles, which are huge time sinks. 记住,说这句话的时候,他正在经历C++编译和链接阶段,这可是非常消耗时间的. [其他] 第三人称单数:compiles 现在分词:compiling 过去式:compiled 过去分词:compiled 形近词: unpile comping comply
怎么执行Compile – MAKEEXEfile命令,,dev – c++4.9.9.2
是编译.如果是用TurboC.选择Compile-MakeEXEfile命令或按F9,即可一次完成编译和连接.如果有错误,系统会提示你,你改过来就行了.
HTML Compiler V2.0怎么用?
可打开APR文件的软件: APR ESRI ArcGIS for Desktop APR TatukGIS Viewer APR Any text editor APR Javid Software Development Apadana.
angular之link和compile的区别
在AngularJS应用启动之前,它们是以HTML文本形式存在文本编辑器当中。应用启动会进行编译和链接,作用域会同HTML进行绑定。这个过程包含了两个阶段!
编译阶段
在编译的阶段,angularJs会遍历整个的文档并根据JavaScript中指令定义来处理页面上什么的指令。在遍历的过程中,有可能一层套着一层,一直延深处遍历。一但遍历和编译完毕就会返回一个叫做模板函数的函数。在这个函数没被返回(return)之前我们可以对编译后的DOM树进行修改。通常情况下,如果设置了compile函数,说明我们希望在指令和实时数据被放到DOM中之前
进行DOM操作,在这个函数中进行诸如添加和删除节点等DOM操作是安全的。本质上,当我们设置
了link选项,实际上是创建了一个postLink() 链接函数,以便compile() 函数可以定义链接函数。编译函数(compile)负责对模板DOM进行转换。
链接函数(link)负责将作用域和DOM进行链接。
1.compile
compile选项可以返回一个对象或函数。
compile函数自身不会经常去写,但是link函数经常被使用。请看下面的例子
我们写了一个DIV标签,定义了一个autohello的一个属性,属性值5. 我们想把 “小平你好的这几句话”输出5遍。我们定义个一个compile 的函数,里面进行了一些DOM操作。在angularJs里面内置了一个小型的jq,所以我们可以用jq的写法来操作。
页面输出如下:
在最后return一个闭包函数,其实就是我们的所说的link函数。平常我们这样定义的compile函数很少用,多种写法,因为写起来比较复杂。
有的同学还挺好奇的,你不是说最后返回的函数是link吗?我可以写多个link函数嘛?为了满足同学的好奇心,我们可以这样改写
然后输出:不起作用哦!!如果同时设置了这两个选项,那么会把compile
所返回的函数当作链接函数,而link选项本身则会被忽略。
那如果我们注释掉compile函数呢?结果会怎样呢?
结果得出:这个link起作用哦。因为compile被注释掉了
angular里.dirrective里的 compile什么意思
$compile,在Angular中即“编译”服务,它涉及到Angular应用的“编译”和“链接”两个阶段,根据从DOM树遍历Angular的根节点(ng-app)和已构造完毕的 \$rootScope对象,依次解析根节点后代,根据多种条件查找指令,并完成每个指令相关的操作(如指令的作用域,控制器绑定以及transclude等),最终返回每个指令的链接函数,并将所有指令的链接函数合成为一个处理后的链接函数,返回给Angluar的bootstrap模块,最终启动整个应用程序。
[TOC]
Angular的compileProvider
抛开Angular的MVVM实现方式不谈,Angular给前端带来了一个软件工程的理念-依赖注入DI。依赖注入从来只是后端领域的实现机制,尤其是javaEE的spring框架。采用依赖注入的好处就是无需开发者手动创建一个对象,这减少了开发者相关的维护操作,让开发者无需关注业务逻辑相关的对象操作。那么在前端领域呢,采用依赖注入有什么与之前的开发不一样的体验呢?
我认为,前端领域的依赖注入,则大大减少了命名空间的使用,如著名的YUI框架的命名空间引用方式,在极端情况下对象的引用可能会非常长。而采用注入的方式,则消耗的仅仅是一个局部变量,好处自然可见。而且开发者仅仅需要相关的“服务”对象的名称,而不需要知道该服务的具体引用方式,这样开发者就完全集中在了对象的借口引用上,专注于业务逻辑的开发,避免了反复的查找相关的文档。
前面废话一大堆,主要还是为后面的介绍做铺垫。在Angular中,依赖注入对象的方式依赖与该对象的Provider,正如小结标题的compileProvider一样,该对象提供了compile服务,可通过injector.invoke(compileProvider.$get,compileProvider)函数完成compile服务的获取。因此,问题转移到分析compileProvider.\$get的具体实现上。
compileProvider.\$get this.\$get = [‘\$injector’, ‘\$parse’, ‘\$controller’, ‘\$rootScope’, ‘\$http’, ‘\$interpolate’, function(\$injector, \$parse, \$controller, \$rootScope, \$http, \$interpolate) { … return compile; } 上述代码采用了依赖注入的方式注入了\$injector,\$parse,\$controller,\$rootScope,\$http,\$interpolate五个服务,分别用于实现“依赖注入的注入器(\$injector),js代码解析器(\$parse),控制器服务(\$controller),根作用域(\$rootScope),http服务和指令解析服务”。compileProvider通过这几个服务单例,完成了从抽象语法树的解析到DOM树构建,作用域绑定并最终返回合成的链接函数,实现了Angular应用的开启。
\$get方法最终返回compile函数,compile函数就是\$compile服务的具体实现。下面我们深入compile函数:
function compile(\$compileNodes, maxPriority) { var compositeLinkFn = compileNodes(\$compileNodes, maxPriority); return function publicLinkFn(scope, cloneAttachFn, options) { options = options {}; var parentBoundTranscludeFn = options.parentBoundTranscludeFn; var transcludeControllers = options.transcludeControllers; if (parentBoundTranscludeFn && parentBoundTranscludeFn.$$boundTransclude) { parentBoundTranscludeFn = parentBoundTranscludeFn.$$boundTransclude; } var $linkNodes; if (cloneAttachFn) { $linkNodes = $compileNodes.clone(); cloneAttachFn($linkNodes, scope); } else { $linkNodes = $compileNodes; } _.forEach(transcludeControllers, function(controller, name) { $linkNodes.data(‘$’ + name + ‘Controller’, controller.instance); }); $linkNodes.data(‘$scope’, scope); compositeLinkFn(scope, $linkNodes, parentBoundTranscludeFn); return $linkNodes; }; } 首先,通过compileNodes函数,针对所需要遍历的根节点开始,完成指令的解析,并生成合成之后的链接函数,返回一个publicLinkFn函数,该函数完成根节点与根作用域的绑定,并在根节点缓存指令的控制器实例,最终执行合成链接函数。
合成链接函数的生成
通过上一小结,可以看出\$compile服务的核心在于compileNodes函数的执行及其返回的合成链接函数的执行。下面,我们深入到compileNodes的具体逻辑中去:
function compileNodes($compileNodes, maxPriority) { var linkFns = []; _.times($compileNodes.length, function(i) { var attrs = new Attributes($($compileNodes[i])); var directives = collectDirectives($compileNodes[i], attrs, maxPriority); var nodeLinkFn; if (directives.length) { nodeLinkFn = applyDirectivesToNode(directives, $compileNodes[i], attrs); } var childLinkFn; if ((!nodeLinkFn !nodeLinkFn.terminal) && $compileNodes[i].childNodes && $compileNodes[i].childNodes.length) { childLinkFn = compileNodes($compileNodes[i].childNodes); } if (nodeLinkFn && nodeLinkFn.scope) { attrs.$$element.addClass(‘ng-scope’); } if (nodeLinkFn childLinkFn) { linkFns.push({ nodeLinkFn: nodeLinkFn, childLinkFn: childLinkFn, idx: i }); } }); // 执行指令的链接函数 function compositeLinkFn(scope, linkNodes, parentBoundTranscludeFn) { var stableNodeList = []; _.forEach(linkFns, function(linkFn) { var nodeIdx = linkFn.idx; stableNodeList[linkFn.idx] = linkNodes[linkFn.idx]; }); _.forEach(linkFns, function(linkFn) { var node = stableNodeList[linkFn.idx]; if (linkFn.nodeLinkFn) { var childScope; if (linkFn.nodeLinkFn.scope) { childScope = scope.$new(); $(node).data(‘$scope’, childScope); } else { childScope = scope; } var boundTranscludeFn; if (linkFn.nodeLinkFn.transcludeOnThisElement) { boundTranscludeFn = function(transcludedScope, cloneAttachFn, transcludeControllers, containingScope) { if (!transcludedScope) { transcludedScope = scope.$new(false, containingScope); } var didTransclude = linkFn.nodeLinkFn.transclude(transcludedScope, cloneAttachFn, { transcludeControllers: transcludeControllers, parentBoundTranscludeFn: parentBoundTranscludeFn }); if (didTransclude.length === 0 && parentBoundTranscludeFn) { didTransclude = parentBoundTranscludeFn(transcludedScope, cloneAttachFn); } return didTransclude; }; } else if (parentBoundTranscludeFn) { boundTranscludeFn = parentBoundTranscludeFn; } linkFn.nodeLinkFn( linkFn.childLinkFn, childScope, node, boundTranscludeFn ); } else { linkFn.childLinkFn( scope, node.childNodes, parentBoundTranscludeFn ); } }); } return compositeLinkFn; } 代码有些长,我们一点一点分析。
首先,linkFns数组用于存储每个DOM节点上所有指令的处理后的链接函数和子节点上所有指令的处理后的链接函数,具体使用递归的方式实现。随后,在返回的compositeLinkFn中,则是遍历linkFns,针对每个链接函数,创建起对应的作用域对象(针对创建隔离作用域的指令,创建隔离作用域对象,并保存在节点的缓存中),并处理指令是否设置了transclude属性,生成相关的transclude处理函数,最终执行链接函数;如果当前指令并没有链接函数,则调用其子元素的链接函数,完成当前元素的处理。
在具体的实现中,通过collectDirectives函数完成所有节点的指令扫描。它会根据节点的类型(元素节点,注释节点和文本节点)分别按特定规则处理,对于元素节点,默认存储当前元素的标签名为一个指令,同时扫描元素的属性和CSS class名,判断是否满足指令定义。
紧接着,执行applyDirectivesToNode函数,执行指令相关操作,并返回处理后的链接函数。由此可见,applyDirectivesToNode则是\$compile服务的核心,重中之重!
applyDirectivesToNode函数
applyDirectivesToNode函数过于复杂,因此只通过简单代码说明问题。
上文也提到,在该函数中执行用户定义指令的相关操作。
首先则是初始化相关属性,通过遍历节点的所有指令,针对每个指令,依次判断$$start属性,优先级,隔离作用域,控制器,transclude属性判断并编译其模板,构建元素的DOM结构,最终执行用户定义的compile函数,将生成的链接函数添加到preLinkFns和postLinkFns数组中,最终根据指令的terminal属性判断是否递归其子元素指令,完成相同的操作。
其中,针对指令的transclude处理则需特殊说明:
if (directive.transclude === ‘element’) { hasElementTranscludeDirective = true; var $originalCompileNode = $compileNode; $compileNode = attrs.$$element = $(document.createComment(‘ ‘ + directive.name + ‘: ‘ + attrs[directive.name] + ‘ ‘)); $originalCompileNode.replaceWith($compileNode); terminalPriority = directive.priority; childTranscludeFn = compile($originalCompileNode, terminalPriority); } else { var $transcludedNodes = $compileNode.clone().contents(); childTranscludeFn = compile($transcludedNodes); $compileNode.empty(); } 如果指令的transclude属性设置为字符串“element”时,则会用注释comment替换当前元素节点,再重新编译原先的DOM节点,而如果transclude设置为默认的true时,则会继续编译其子节点,并通过transcludeFn传递编译后的DOM对象,完成用户自定义的DOM处理。
在返回的nodeLinkFn中,根据用户指令的定义,如果指令带有隔离作用域,则创建一个隔离作用域,并在当前的dom节点上绑定ng-isolate-scope类名,同时将隔离作用域缓存到dom节点上;
接下来,如果dom节点上某个指令定义了控制器,则会调用\$cotroller服务,通过依赖注入的方式(\$injector.invoke)获取该控制器的实例,并缓存该控制器实例;
随后,调用initializeDirectiveBindings,完成隔离作用域属性的单向绑定(@),双向绑定(=)和函数的引用(&),针对隔离作用域的双向绑定模式(=)的实现,则是通过自定义的编译器完成简单Angular语法的编译,在指定作用域下获取表达式(标示符)的值,保存为lastValue,并通过设置parentValueFunction添加到当前作用域的$watch数组中,每次\$digest循环,判断双向绑定的属性是否变脏(dirty),完成值的同步。
最后,根据applyDirectivesToNode第一步的初始化操作,将遍历执行指令compile函数返回的链接函数构造出成的preLinkFns和postLinkFns数组,依次执行,如下所示:
_.forEach(preLinkFns, function(linkFn) { linkFn( linkFn.isolateScope ? isolateScope : scope, $element, attrs, linkFn.require && getControllers(linkFn.require, $element), scopeBoundTranscludeFn ); }); if (childLinkFn) { var scopeToChild = scope; if (newIsolateScopeDirective && newIsolateScopeDirective.template) { scopeToChild = isolateScope; } childLinkFn(scopeToChild, linkNode.childNodes, boundTranscludeFn); } _.forEachRight(postLinkFns, function(linkFn) { linkFn( linkFn.isolateScope ? isolateScope : scope, $element, attrs, linkFn.require && getControllers(linkFn.require, $element), scopeBoundTranscludeFn ); }); 可以看出,首先执行preLinkFns的函数;紧接着遍历子节点的链接函数,并执行;最后执行postLinkFns的函数,完成当前dom元素的链接函数的执行。指令的compile函数默认返回postLink函数,可以通过compile函数返回一个包含preLink和postLink函数的对象设置preLinkFns和postLinkFns数组,如在preLink针对子元素进行DOM操作,效率会远远高于在postLink中执行,原因在于preLink函数执行时并未构建子元素的DOM,在当子元素是个拥有多个项的li时尤为明显。
end of compile-publicLinkFn
终于,到了快结束的阶段了。通过compileNodes返回从根节点(ng-app所在节点)开始的所有指令的最终合成链接函数,最终在publicLinkFn函数中执行。在publicLinkFn中,完成根节点与根作用域的绑定,并在根节点缓存指令的控制器实例,最终执行合成链接函数,完成了Angular最重要的编译,链接两个阶段,从而开始了真正意义上的双向绑定。
borland c++ compiler 使用方法
除了按照readme的说明添加bcc32.cfg和ilink32.cfg两个文件外,把C:\Borland\BCC32\Bin目录也添加到系统的Path目录中.最后: 用bcc32编译 bcc32 test.cpp