我是高三学生,能否简单介绍一下细胞内脱氧核苷酸是怎么生成的或者是来源,谢啦~
高三还没有学到。
细胞内的核苷酸一般是通过两个途径:一个是从头合成,通过其他的代谢途径,形成原料,而后合成。另外一个相当于是回收再利用,叫做补救合成。嘌呤核苷酸和嘧啶核苷酸有些不同。
详细的情况百度百科上也有:
⒈嘌呤核苷酸的从头合成
肝是体内从头合成嘌呤核苷酸的主要器官,其次是小肠粘膜和胸腺。嘌呤核苷酸合成部位在胞液,合成的原料包括磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及CO2等。主要反应步骤分为两个阶段:首先合成次黄嘌呤核苷酸(IMP),然后IMP再转变成腺嘌呤核苷酸(AMP)与鸟嘌呤核苷酸(GMP)。嘌呤环各元素来源如下:N1由天冬氨酸提供,C2由N10-甲酰FH4提供、C8由N5,N10-甲炔FH4提供,N3、N9由谷氨酰胺提供,C4、C5、N7由甘氨酸提供,C6由CO2提供。嘌呤核苷酸从头合成的特点是:嘌呤核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先单独合成嘌呤碱然后再与磷酸核糖结合的。反应过程中的关键酶包括PRPP酰胺转移酶、PRPP合成酶。PRPP酰胺转移酶是一类变构酶,其单体形式有活性,二聚体形式无活性。IMP、AMP及GMP使活性形式转变成无活性形式,而PRPP则相反。从头合成的调节机制是反馈调节,主要发生在以下几个部位:嘌呤核苷酸合成起始阶段的PRPP合成酶和PRPP酰胺转移酶活性可被合成产物IMP、AMP及GMP等抑制;在形成AMP和GMP过程中,过量的AMP控制AMP的生成,不影响GMP的合成,过量的GMP控制GMP的生成,不影响AMP的合成;IMP转变成AMP时需要GTP,而IMP转变成GMP时需要ATP。
⒉嘌呤核苷酸的补救合成
反应中的主要酶包括腺嘌呤磷酸核糖转移酶(APRT),次黄嘌呤-鸟嘌呤磷酸核糖转移酶(HGPRT)。嘌呤核苷酸补救合成的生理意义:节省从头合成时能量和一些氨基酸的消耗;体内某些组织器官,例如脑、骨髓等由于缺乏从头合成嘌呤核苷酸的酶体系,而只能进行嘌呤核苷酸的补救合成。
⒈嘧啶核苷酸的从头合成
肝是体内从头合成嘧啶核苷酸的主要器官。嘧啶核苷酸从头合成的原料是天冬氨酸、谷氨酰胺、CO2等。反应过程中的关键酶在不同生物体内有所不同,在细菌中,天冬氨酸氨基甲酰转移酶是嘧啶核苷酸从头合成的主要调节酶;而在哺乳动物细胞中,嘧啶核苷酸合成的调节酶主要是氨基甲酰磷酸合成酶Ⅱ。主要合成过程:形成的第一个嘧啶核苷酸是乳氢酸核苷酸(OMP),进而形成尿嘧啶核苷酸(UMP),UMP在一系列酶的作用下生成CTP。dTMP由dUMP经甲基化生成的。嘧啶核苷酸从头合成的特点是先合成嘧啶环,再磷酸核糖化生成核苷酸。
⒉嘧啶核苷酸的补救合成
主要酶是嘧啶磷酸核糖转移酶,能利用尿嘧啶、胸腺嘧啶及乳氢酸作为底物,对胞嘧啶不起作用。
用js怎么把amp;字符换成quot;amp;amp
首先你已经安装了交叉编译工具链,比如说自己安装了gcc-linaro-arm-linux-gnueabihf-4.8-2013.10_linux工具 然后cmake用的是cmake-3.4.1-linux-i386.tar.gz版本,其实这个只需在linux中解压即可,需要用cmake-gui时,只需到bin目录下,sudo ./cmake-gui即可 打开cmake-gui之后,选择要编译的源文件和编译之后存放的路径
& html转化后是什么
amp+pi->adp 可逆 adp+pi->atp 可逆 这三者的不同就在于无机磷酸的含量不同,其它都一样,atp带3个pi,adp2个,amp1个
核苷酸的代谢
可从合成代谢、分解代谢及代谢调节三个方面讨论。 嘌呤核苷酸主要由一些简单的化合物合成而来,这些前身物有天门冬氨酸、甘氨酸、谷氨酰胺、CO2及一碳单位(甲酰基及次甲基,由四氢叶酸携带)等。它们通过11步酶促反应先合成次黄嘌呤核苷酸(又称肌苷酸)。随后,肌苷酸又在不同部位氨基化而转变生成腺苷酸及鸟苷酸。合成途径的第一步是5-磷酸核糖在酶催化下,活化生成5-磷酸核糖1-焦磷酸。(PRPP),这是一个重要的反应。嘌呤核苷酸的从头合成主要是在肝脏中进行,其次是在小肠粘膜及胸腺中进行。
嘌呤核苷酸降解可产生嘌呤碱,嘌呤碱最终分解为尿酸,其中部分分解产物可被重新利用再合成嘌呤核苷酸,这称为回收合成代谢途径,可在骨髓及脾脏等组织中进行。嘌呤核苷酸降解产生的腺嘌呤、鸟嘌呤及次黄嘌呤在磷酸核糖转移酶的催化下,接受3′-焦磷酸-5-磷酸核糖(PRPP)分子中的磷酸核糖,生成相应的嘌呤核苷酸。此合成途径也具有一定意义。
嘧啶核苷酸的从头合成主要也在肝脏中进行。合成原料为氨基甲酰磷酸及天门冬氨酸等。氨基甲酰磷酸及天门冬氨酸经过数步酶促反应生成尿苷酸,尿苷酸转变为三磷酸尿苷后,从谷氨酰胺接受氨基生成三磷酸胞苷。
上述体内合成的嘌呤及嘧啶核苷酸均系一磷酸核苷。它们均可在磷酸激酶的催化下,接受 ATP提供的磷酸基,进一步转变为二磷酸核苷及三磷酸核苷。
体内还有一类脱氧核糖核苷酸。它们是dAMP、dGMP、dCMP及dTMP。它们组成中的脱氧核糖并非先生成而后组合到核苷酸分子中去,而是通过业已合成的核糖核苷酸的还原作用而生成的。此还原作用发生于二磷酸核苷分子水平上,dADP、dGDP、dCDP及dUDP均可由此而来,但dTMP则不同,它是由dUMP经甲基化作用而生成的。 核苷酸在体内的合成受到反馈性的调节作用。嘌呤核苷酸合成的终产物是AMP及GMP,它们可以反馈性地抑制由 IMP转变为AMP及GMP的反应。它们可与 IMP一齐反馈性地抑制合成途径的起始反应PRPP的生成。嘧啶核苷酸合成的产物 CTP也可反馈性地抑制嘧啶合成的起始反应。
ADP如何转化成AMP?
ATP、ADP、AMP加起来的量是一定的,在一定的条件下可以转化。
在细胞内存在着三种腺苷酸,即ATP、ADP和AMP,称为腺苷酸库。在细胞中ATP、ADP和AMP在某一时间的相对数量控制着细胞的代谢活动。为了衡量细胞中高能磷酸状态在数量上的大小,Atkinson(1968)提出了能荷的概念。能荷的大小可以说明生物体中ATP、ADP、AMP系统的能量状态。能荷的数值的变化范围为0~1.0,即当细胞中全部的AMP和ADP都转化成ATP时,能荷为1.0,在细胞以较快的速度进行磷酸化(合成ATP),而生物合成反应又很少进行时,才能出现这种情况,此时,腺苷酸系统中可利用态的高能磷酸键数量最大;当腺苷酸化合物都呈ADP状态时,此时能荷为0.5,系统中含有一半的高能磷酸键;而当所有的ATP和ADP都转化为AMP时,则能荷等于零,此时腺苷酸系统中完全不存在高能化合物。总之,能荷由ATP、ADP和AMP的相对数量决定,它在代谢中起调控作用。高能荷能抑制ATP的生成(分解代谢)途径而激活ATP利用(合成代谢)的途径。 这个就是 ADP怎么变成AMP
难道只有超级解霸才能将其它格式的歌曲文件转换为amp;quot;MP3amp;quot;格式的歌曲文件吗?
当然不是,而且超级解霸已经老掉牙了像foobar、Wavernbsp;、MP3nbsp;Strip_It、音频转化大师等等都可以